k-Lefschetz properties, sectional matrices and hyperplane arrangements

نویسندگان

چکیده

In this article, we study the k-Lefschetz properties for non-Artinian algebras, proving that several known results in Artinian case can be generalized setting. Moreover, describe how to characterize graded algebras having using sectional matrices. We then apply obtained of Jacobian algebra hyperplane arrangements, with particular attention class free arrangements.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperplane arrangements and K-theory1

Abstract. We study the Z2-equivariant K-theory of M(A), where M(A) is the complement of the complexification of a real hyperplane arrangement, and Z2 acts on M(A) by complex conjugation. We compute the rational equivariant Kand KO-rings of M(A), and we give two different combinatorial descriptions of a subring Line(A) of the integral equivariant KO-ring, where Line(A) is defined to be the subri...

متن کامل

Hyperplane arrangements and K-theory

Abstract. We study the Z2-equivariant K-theory of M(A), where M(A) is the complement of the complexification of a real hyperplane arrangement, and Z2 acts on M(A) by complex conjugation. We compute the rational equivariant K and KO rings of M(A), and we give two different combinatorial descriptions of a subring Line(A) of the integral equivariant KO ring, where Line(A) is defined to be the subr...

متن کامل

Random Walk and Hyperplane Arrangements

Let C be the set of chambers of a real hyperplane arrangement. We study a random walk on C introduced by Bidigare, Hanlon, and Rockmore. This includes various shuuing schemes used in computer science, biology, and card games. It also includes random walks on zonotopes and zonotopal tilings. We nd the stationary distributions of these Markov chains, give good bounds on the rate of convergence to...

متن کامل

Branched Polymers and Hyperplane Arrangements

We generalize the construction of connected branched polymers and the notion of the volume of the space of connected branched polymers studied by Brydges and Imbrie [BI], and Kenyon and Winkler [KW] to any hyperplane arrangement A. The volume of the resulting configuration space of connected branched polymers associated to the hyperplane arrangement A is expressed through the value of the chara...

متن کامل

Artin groups and hyperplane arrangements

These are the notes of a mini-course given at the conference “Arrangements in Pyrénées”, held in Pau (France) from 11th to 15th of June, 2012. Definition. Let S be a finite set. A Coxeter matrix on S is a square matrix M = (ms,t)s,t∈S indexed by the elements of S and satisfying: (a) ms,s = 1 for all s ∈ S; (b) ms,t = mt,s ∈ {2, 3, 4, . . . } ∪ {∞} for all s, t ∈ S, s 6= t. A Coxeter matrix is u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2022

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2021.10.014